USN

17MAT31

Third Semester B.E. Degree Examination, June/July 2019
Engineering Mathematics - III
Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Obtain the fourier series of the function $f(x)=x-x^{2}$ in $-\pi \leq x \leq \pi$ and hence deduce $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+$ \qquad (08 Marks)
b. Obtain the Half Range Fourier cosine series for the $f(x)=\sin x$ in $[0, \pi]$. (06 Marks)
c. Obtain the constant term and the coefficients of first sine and cosine terms in the fourier expansion of y given

$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{y}:$	9	18	24	28	26	20

(06 Marks) OR
2 a. Obtain the fourier series of $f(x)=\frac{\pi-x}{2}$ in $\left[\begin{array}{ll}0, & 2 \pi\end{array}\right]$ and hence deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots .$.
(08 Marks)
b. Find the fourier half range cosine series of the function $f(x)=2 x-x^{2}$ in $[0,3] . \quad$ (06 Marks)
c. Express y as a fourier series upto first harmonic given

$\mathrm{x}:$	0	30	60	90	120	150	180	210	240	270	300	330
$\mathrm{y}:$	1.8	1.1	0.30	0.16	1.5	1.3	2.16	1.25	1.3	1.52	1.76	2.0

Module-2

3 a. Find the fourier transform of $f(x)=\left\{\begin{array}{rr}a^{2}-x^{2} ;|x| \leq a \\ 0 & ;|x|>a\end{array}\right.$ and hence deduce $\int_{0}^{a} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$
(08 Marks)
b. Find the fourier sine transform of $e^{-|x|}$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin a x}{1+x^{2}} d x ; a>0 \quad$ (06 Marks)
c. Obtain the z-transform of $\cos n \theta$ and $\sin n \theta$.
(06 Marks)

4 a. Find the fourier transform of $f(x)=x e^{-1 x}$
(08 Marks)
b. Find the fourier cosine transform of $f(x)$ where

$$
f(x)=\left\{\begin{array}{cc}
x ; & 0<x<1 \\
2-x ; & 1<x<2 \\
0 ; & x>2
\end{array}\right.
$$

(06 Marks)
c. Solve $u_{n+2}+6 u_{n+1}+9 u_{n}=2^{n}$ with $u_{0}=u_{1}=0$ using z-transform.
(06 Marks)

Module-3

5 a. Fit a straight line $y=a x+b$ for the following data by the method of least squares.

$\mathrm{x}:$	1	3	4	6	8	9	11	14
$\mathrm{y}:$	1	2	4	4	5	7	8	9

(08 Marks)
b. Calculate the coefficient of correlation for the data:

$\mathrm{x}:$	92	89	87	86	83	77	70	63	53	50
$\mathrm{y}:$	86	83	91	77	68	85	54	82	37	57

(06 Marks)
c. Compute the real root of $x \log _{10} x-1.2=0$ by the method of false position. Carry out 3 iterations in $(2,3)$.
(06 Marks)
OR
6 a. Fit a second degree parabola to the following data $y=a+b x+c x^{2}$

$\mathrm{x}:$	1	1.5	2	2.5	3	3.5	4
$\mathrm{y}:$	1.1	1.3	1.6	2	2.7	3.4	4.1

(08 Marks)
b. If θ is the angle between two regression lines, show that $\tan \theta=\left(\frac{1-r^{2}}{r}\right) \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$; explain significance of $r=0$ and $r= \pm 1$.
(06 Marks)
c. Using Newton Raphson method, find the real root of the equation $3 x=\cos x+1$ near $\mathrm{x}_{0}=0.5$. Carry out 3 iterations.
(06 Marks)

Module-4

7
a. From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks :	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

(08 Marks)
b. Use Newton's dividend formula to find $f(9)$ for the data:

x	5	7	11	13	17
$f(x)$	$:$	150	392	1452	2366

(06 Marks)
c. Find the approximate value of $\int_{0}^{\pi / 2} \sqrt{\cos \theta} d \theta$ by Simpson's $\frac{1}{3}$ rd rule by dividing $\left[0, \frac{\pi}{2}\right]$ into 6 equal parts
(06 Marks)

OR

8 a. The area A of a circle of diameter d is given for the following values:

d	\vdots	80	85	90	95
a	$:$	5026	5674	6362	7088

Calculate the area of circle of diameter 105 by Newton's backward formula.
(08 Marks)
b. Using Lagrange's interpolation formula to find the polynomial which passes through the points $(0,-12),(1,0),(3,6),(4,12)$.
(06 Marks)
c. Evaluate $\int_{4}^{5.2} \log _{\mathrm{e}} \mathrm{x} d \mathrm{~d}$ taking 6 equal parts by applying Weddle's rule.
(06 Marks)

Module-5

9 a. If $\overrightarrow{\mathrm{F}}=3 x y \hat{\mathrm{i}}-y^{2} \hat{\mathrm{j}}$, evaluate $\int_{\mathrm{C}} \overrightarrow{\mathrm{F}}$. $\mathrm{d} \overrightarrow{\mathrm{r}}$ where ' C ' is arc of parabola $\mathrm{y}=2 \mathrm{x}^{2}$ from $(0,0)$ to $(1,2)$
b. Evaluate by Stokes theorem
(08 Marks)
$\oint_{C}(\sin z d x-\cos x d y+\sin y d z)$, where C is the boundary of the rectangle $0 \leq x \leq \pi$; $0 \leq y \leq 1, z=3$
(06 Marks)
c. Prove that the necessary condition for the $I=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$ to be extremum is $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$
(06 Marks)

OR

10 a. Using Green's theorem evaluate $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is the boundary of the region bounded by the lines $x=0, y=0, x+y=1$.
(08 Marks)
b. Find the external value of $\int_{0}^{\pi / 2}\left[\left(y^{\prime}\right)^{2}-y^{2}+4 y \cos x\right] d x$. Given that $y(0)=0, y\left(\frac{\pi}{2}\right)=0$.
(06 Marks)
c. Prove that the shortest distance between two points in a plane is along a straight line joining them.
(06 Marks)

Third Semester B.E. Degree Examination, June/July 2019
 Electronic Instrumentation

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Define the following terms as applied to an electronic instruments:
i) Accuracy
ii) Precision
iii) Error
iv) Resolution
v) Sensitivity
(10 Marks)
b. A basic D'Arsonval movement with an internal resistance of 50Ω and a fall scale deflection current of 2 mA is to be used as a multirange voltmeter. Determine the series resistances to obtain the voltage ranges of $0-10 \mathrm{~V}, 0-50 \mathrm{~V}, 0-100 \mathrm{~V}$ and $0-500 \mathrm{~V}$.
(10 Marks)
OR
2 a. Explain the working of a true RMS voltmeter with a suitable diagram.
(10 Marks)
b. Explain the various types of thermocouple used in RF ammeter in detail.
(10 Marks)

Module-2

3 a. Explain the working of dual slope type DVM with a block diagram.
(10 Marks)
b. With a neat block diagram, explain the working of frequency meter.
(10 Marks)

OR

4 a. Draw the block diagram and explain the working principle of successive approximation type DVM.
b. Explain the working of digital pH meter with the help of block diagram.
(10 Marks)

Module-3

5 a. Draw the block diagram of CRO and explain the functions of each block.
(10 Marks)
b. Explain with a block diagram AF sine-square wane generator.
(10 Marks)

OR

6 a. Explain with a block diagram of function generator in detail.
(10 Marks)
b. Explain the operation of digital storage oscilloscope with a help of block diagram. ($\mathbf{1 0}$ Marks)

Module-4

7 a. Explain with a help of a neat diagram, construction and principle of operation of Megger.
(10 Marks)
b. Draw the Maxwell's bridge to determine inductance in terms of known capacitance and derive Q -factor and expression for inductance.
(10 Marks)

8 a. Find parallel R and C , that causes a Wien's bridge to null with the following components values. $R_{1}=2.7 \mathrm{~K} \Omega, R_{2}=22 \mathrm{~K} \Omega, C_{1}=5 \mu \mathrm{~F}, \mathrm{R}_{4}=100 \mathrm{~K} \Omega$ and operating frequency is 2.2 kHz .
b. Explain susceptance method of Q-measurement.
(10 Marks)
c. The self capacitance of a coil is to be measured by Q-meter. The first measurement result is $f_{1}=1.5 \mathrm{MHz}$ and $C_{1}=550 \mathrm{PF}$. The second measurement result is $f_{2}=3 \mathrm{MHz}$ and a new value of tuning capacitor is 110 pF . Find the distributed capacitance and inductance.
(04 Marks)

Module-5

9 a. What is transducer? Explain working of resistive position transducer with a neat sketch.
(10 Marks)
b. What are the different types of photoelectric transducer? Explain photo voltaic transducer.
(10 Marks)

OR

10 a. With a neat sketch, explain construction and working of LVDT.
(10 Marks)
b. What is gauge factor? Derive an expression for gauge factor and prove that $K=1+2 \mu$.
(10 Marks)

Third Semester B.E. Degree Examination, June/July 2019
 Analog Electronics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Draw the graphical symbol and r_{e}-equivalent circuit for the common Emitter and common base configuration including the effect of r_{0}.
(06 Marks)
b. Write the expression for $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$ and A_{v} of a voltage divider configuration using AC equivalent circuit with r_{e} model, [with bypassed R_{E}], for a BJT amplifier.
(08 Marks)
c. For the circuit shown in Fig.Q.1(c), determine Z_{i}, Z_{0} and A_{v}.
(06 Marks)

Fig. Q. 1(c)

2 a. Draw the circuit diagram of Darlington amplifier and find DC parameters $I_{C_{2}}$ and $V_{\mathrm{CE}_{2}}$.
(06 Marks)
b. Derive the expression for Z_{i}, Z_{0} and A_{v} for common emitter fixed bias configuration using approximate hybrid equivalent circuit.
(08 Marks)
c. Determine input impedance, output impedance and voltage gain of emitter follower, where $V_{C C}=12 \mathrm{~V}, R_{B}=220 \mathrm{~K} \Omega, R_{E}=3.3 \mathrm{~K} \Omega, \beta=100$ and $r_{0}=\infty \Omega$. Use r_{e} model.
(06 Marks)

Module-2

3 a. Describe the construction and working principle of n-channel JFET.
(06 Marks)
b. Derive the expression for $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$ and A_{v} using AC equivalent circuit for JFET common-gate configuration.
(08 Marks)
c. For the FET amplifier show in Fig.Q.3(c). Calculate Z_{i}, Z_{0} and A_{v} with the effect of r_{d}.

Fig.Q.3(c)
(06 Marks)

OR

4 a. Draw and explain the drain and transfer characteristic of n-channel depletion MOSFET.
b. Write the ac equivalent circuit for FET self biased configuration and determine Z_{i}, Z_{0} and A_{v} [with Rs bypassed).
c. Give the comparison between JFET and MOSFET.
(06 Marks)

Module-3

5 a. Draw the single RC coupled BJT amplifier and derive the expression for lower cut-off frequencies due to coupling capacitors C_{S} and C_{C}.
(10 Marks)
b. What is miller effect? Prove that Miller effect input capacitance is $C_{m i}=\left(1-A_{v}\right) C_{f}$ and out miller effect capacitance is $C_{m o}=\left(1-\frac{1}{A_{v}}\right) C_{f}$.
(10 Marks)

OR

6 a. Draw the high frequency ac equivalent circuit for FET amplifier and derive $f_{H i}$ and $f_{H O}$.
(10 Marks)
b. Derive the expression for overall higher cut-off frequency for a multistage amplifier.
(05 Marks)
c. An amplifier consists of 3 identical stages in cascade, the bandwidth of overall-amplifier extends from 20 Hz to 20 kHz . Find the bandwidth of individual stages.
(05 Marks)

Module-4

7 a. Draw the block diagrams of the following feedback connections types:
i) Voltage-series feedback
ii) Voltage-shunt feedback
iii) Current-series feedback
iv) Current-shunt feedback
(08 Marks)
b. Draw the circuit diagram of FET phase shift oscillator and explain the operation. Write the expression for the frequency of oscillations.
(08 Marks)
c. In a Colpitts oscillator, $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$ and $\mathrm{L}=100 \mu \mathrm{H}$. The frequency of oscillations is 500 kHz . Determine the value of C .
(04 Marks)

OR

8
a. With block diagram of voltage shunt feedback connection type, obtain the expression for input impedance.
(08 Marks)
b. With the help of neat circuit diagram, explain the operation of transistor Hartley oscillator write the expression for the frequency of oscillations.
(08 Marks)
c. A crystal has the following parameter $\mathrm{L}=0.334 \mathrm{H}, \mathrm{C}_{\mathrm{m}}=1 \mathrm{pF}, \mathrm{C}=0.065 \mathrm{pF}$ and $\mathrm{R}=5.5 \mathrm{~K} \Omega$. Find the series and parallel resonant frequency.
(04 Marks)

Module-5

9 a. Explain the operation of series-fed class-A power amplifier and show that maximum conversion efficiency is 25%.
(08 Marks)
b. A single transistor amplifier with transformer coupled load produces harmonic amplitudes in the output as $\mathrm{B}_{0}=1.5 \mathrm{~mA}, \mathrm{~B}_{1}=120 \mathrm{~mA}, \mathrm{~B}_{2}=10 \mathrm{~mA}, \mathrm{~B}_{3}=4 \mathrm{~mA}, \mathrm{~B}_{4}=2 \mathrm{~mA}$ and $\mathrm{B}_{5}=1 \mathrm{~mA}$
i) Determine the percentage total harmonic distortion.
ii) Assume a second identical transistor is used along with a suitable transformer to provide pushpull operation. Use the above harmonic amplitudes to find the new total harmonic distortion.
(06 Marks)
c. Draw the block diagram of shunt voltage regulator and explain the individual blocks.
(06 Marks)

OR

10 a. What is harmonic distortion? Explain the three point method of calculating the second harmonic distortion.
(06 Marks)
b. A class- B push-pull amplifier operating with $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V}$ provides a 22 V peak signal to an 8Ω load. Find: i) Peak load current ii) dc current drawn from the supply 11 P iii) DC power iv) ac power v) Efficiency.
(06 Marks)
c. Draw the block diagram of series voltage regulator and explain the operation. Also find the o / p voltage and the zener current for the series regulator shown in Fig.Q.10(c).
(08 Marks)

Fig.Q.10(c)

\square

Third Semester B.E. Degree Examination, June/July 2019 Digital Electronics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Construct a truth table and write a Boolean expression for the problem statement. An output variable Y is to be true when the value of inputs exceeds 4 . The weights for each input variable is $\mathrm{a}=4, \mathrm{~b}=3, \mathrm{c}=-1$, and $\mathrm{d}=1$. Design the logic circuit for the obtained expression.
(10 Marks)
b. Place the equation $P=f(a, b, c)=a b+\overline{a c}+b \bar{c}$ into proper canonical form and write the minterms.
(05 Marks)
c. What do you mean by canonical SOP and canonical POS? Explain with example? (05 Marks)

OR

2 a. Simplify $\mathrm{K}=\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,5,13,15)+\Sigma \mathrm{d}(2,7,10,14)$ using K-map method. Draw the logic diagram for obtained expression.
(10 Marks)
b. Simplify $\mathrm{D}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,1,2,3,6,7,8,9,12,15)$ using QM - method, verify the same using K-map. Draw the logic diagram for simplified expression.
(10 Marks)

Module-2

3 a. What is an encoder? Design 4 to 2 priority encoder?
(08 Marks)
b. Realize the function $X=f(a, b, c, d)=\sum m(0,3,7,10,13)$ using 74LS138 ICs.
(08 Marks)
c. Design $4: 1$ Mux and draw the logic diagram using basic gates.
(04 Marks)

OR

4 a. Implement $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,1,5,6,7,10,15)$ using $8: 1$ Mux with $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as select lines.
(08 Marks)
b. Design a binary full subtractor using NAND gates only.
(06 Marks)
c. Explain about carry look ahead adder.
(06 Marks)

Module-3

5 a. Obtain the characteristic equations for D and T flip-flops.
(08 Marks)
b. Explain the operation of SR-Flip-Flop with the help of logic diagram. Draw functional table.
(08 Marks)
c. What is race around condition? Explain with diagram.
(04 Marks)

OR

6 a. Explain the working of master slave J-K flip flop with the help of logic diagram. Draw the timing diagrams of the same.
(10 Marks)
b. Explain D-flip-flop operation using positive edge triggered clock. (06 Marks)
c. Write two-two difference between :
i) Combinational and sequential logic
ii) Latch and flip-flop.
(04 Marks)

Module-4

7 a. What is register? Explain with diagram of 4-bit serial-in parallel-out shift register.
b. Explain 3-bit asynchronous up and down binary counters.

OR

8 a. Design mod-5 ripple counter using T-flip-flops.
(08 Marks)
b. Design 3-bit synchronous up counter.
(08 Marks)
c. Compare asynchronous and synchronous counters.

Module-5

9 a. Design a Mealy type sequence detector to detect a serial input sequence of 101 .
b. Design 2-bit synchronous up counter.

OR

10 a. Analyze the following sequential circuit, by writing input and output equations, state table and state diagram.
(12 Marks)

Fig.Q10(a)
b. What are Mealy and Moore models? Explain briefly with diagram.
c. Draw a sate table and state diagram with an example.

Third Semester B.E. Degree Examination, June/July 2019 Network Analysis

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define the following terms with examples:
i) Active elements
ii) Passive elements
iii) Linear and non linear elements
iv) Lumped node
v) Unilateral and bilateral elements.
b. Use the node analysis and find the value of V_{x} in the circuit shown in below Fig.Q.1(b). Such that the current through the impedance $(2+\mathrm{J} 3) \Omega$ is zero.

(10 Marks)

2 a. Derive an expression for i) Δ to Y transformation ii) Y to Δ transformation. ($\mathbf{1 0}$ Marks)
b. Find the voltage across 20Ω resistor in the network shown in Fig.Q.2(b) below by using Mesh analysis method.

Fig.Q.2(b)
Module-2
3 a. State and prove Millman's theorem with an example.
(10 Marks)
b. Find the Thevenin's equivalent circuit of Fig.Q.3(b) shown below:

Fig.Q.3(b)
1 of 3

OR

4 a. Prove that the maximum power transferred from source to load when,
i) $R_{L}=R_{0}$
ii) $R_{L}=\left|Z_{o}\right|$
iii) $Z_{L}=\dot{Z}_{o}$
(10 Marks)
b. Find the value of i_{b} using Norton's equivalent circuit when $R=667 \Omega$, refer Fig.Q.4(b).
(10 Marks)

Fig.Q.4(b)

Module-3

5 a. Determine $\mathrm{i}, \frac{\mathrm{di}}{\mathrm{dt}}, \frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$, when the switch is closed at $\mathrm{t}=0$, from the Fig.Q.5(a) shown below.
(10 Marks)
b. Find:
i) $\mathrm{i}\left(0^{+}\right)$and $\mathrm{v}\left(0^{+}\right)$
ii) $\frac{\mathrm{di}\left(0^{+}\right)}{\mathrm{dt}}$ and $\frac{\mathrm{dv}\left(0^{+}\right)}{\mathrm{dt}}$
iii) $\mathrm{I}(\infty)$ and $\mathrm{v}(\infty)$
from the circuit shown in Fig.Q.5(b) below.
(10 Marks)

OR
6 a. Deduce the Laplace transform of the following:
i) $\operatorname{Sin}^{2} t$
ii) $\cos ^{2} t$
iii) Sinwt
iv) $\int_{0}^{t} i(t) . d t$
(10 Marks)
b. State and prove Initial and Final value theorems.

Module-4

7 a. Demonstrate the terms: i) Resonance ii) Q-factor iii) Band width iv) Selectivity v) Half power frequency pertaining to a R-L-C series circuit.
(10 Marks)
b. Prove that the Resonating frequency in a R-L-C series circuit is geometrical mean of half power frequencies i.e. $f_{0}=\sqrt{\mathrm{f}_{1} \mathrm{f}_{2}}$.
(10 Marks)
OR
8 a. Evaluate $\mathrm{W}_{0}, \mathrm{Q}, \mathrm{BW}$ and half power frequencies and the output voltage V at W_{0}, refer Fig.Q.8(a).
(10 Marks)

Fig.Q.8(a)
b. Derive an expression for resonance by varying R_{L} in parallel RLC circuit.
(10 Marks)

Module-5

9 a. Express Z parameters in terms h parameters and what are hybrid parameters.
(10 Marks)
b. Determine the transmission parameters for the network shown Fig.Q.9(b) below.
(10 Marks)

Fig.Q.9(b)
OR
10 a. Obtain the condition of transmission parameters for two networks connected in cascade.
(10 Marks)
b. Determine the Z-parameters for the circuit shown in Fig.Q.10(b) below.

Fig.Q.10(b)

Third Semester B.E. Degree Examination, June/July 2019 Engineering Electromagnetics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law of force between two point charges in vector form.
(06 Marks)
b. Identical point charges of $3 \mu \mathrm{C}$ are located at four corners of the square of 5 cm side. Find the magnitude of the force on any charge.
(08 Marks)
. Define Electric Field Intensity. Derive the electric field intensity due to ' n ' number of point charges.
(06 Marks)

OR

2 a. Derive the expression for the electric field intensity due to infinite line charge.
(06 Marks)
b. Obtain the expression for an electric field intensity due to charged circular ring of radius ' r ' placed in $x-y$ plane, at a point $(0,0, z)$, having uniform line charge density of $\rho_{\mathrm{L}}(\mathrm{c} / \mathrm{m})$.
(06 Marks)
c. A uniform line charge $\rho_{\mathrm{L}}=25 \mathrm{nc} / \mathrm{m}$ lies on the line $\mathrm{x}=-3 \mathrm{~m}$ and $\mathrm{y}=4 \mathrm{~m}$ in free space. Find the electric field intensity at a point $(2,3,15)$
(06 Marks)

Module-2

3 a. State and explain Gauss's law and prove Gauss's law as applied to point charge. (06 Marks)
b. Given that the field $\overrightarrow{\mathrm{D}}=\frac{5 \sin \theta \cos \phi}{\mathrm{ar}}\left(\mathrm{c} / \mathrm{m}^{2}\right)$. Find volume charge density. (06 Marks)
c. Given $\vec{D}=5 \mathrm{r} \overrightarrow{\mathrm{ar}}\left(\mathrm{c} / \mathrm{m}^{2}\right)$, prove divergence theorem for a shell region enclosed by spherical surfaces at $r=a$ and $r=b(b>a)$ and centered at the origin.
(08 Marks)

OR

4 a. Explain the concept of work and potential and obtain the expression for potential difference between two points due to an electric field produced by a point charge.
(06 Marks)
b. Obtain the point form of continuity equation.
c. Given the current density $\overrightarrow{\mathrm{J}}=\frac{2}{\mathrm{r}^{2}} \cos \theta \overrightarrow{\mathrm{ar}}+20 \mathrm{e}^{-2 \mathrm{r}} \sin \theta \overrightarrow{\mathrm{a} \theta}-\mathrm{r} \sin \theta \cos \phi \overrightarrow{\mathrm{a} \phi}\left(\mathrm{A} / \mathrm{m}^{2}\right)$
i) Find J at $\mathrm{r}=3 \mathrm{~m}, \theta=0^{\circ}, \phi=\pi$.
ii) Find the total current passing through spherical surface $\mathrm{r}=3 \mathrm{~m}, 0<\theta<20^{\circ}, 0<\phi<2 \pi$.
(08 Marks)

Module-3

5 a. From point form of Gauss's law, derive Poisson's and Laplace's equation.
(05 Marks)
b. State and prove uniqueness theorem.
c. Applying Laplace's equation, obtain the expression for capacitance of a parallel plate capacitor. The distance between two plates are ' d ' and the area of plate is ' A '.
(07 Marks)

OR

6 a. Using Biot - Savart law obtain the expression for magnetic field intensity at a point due to infinitely long straight conductor.
(08 Marks)
b. Given the magnetic field $\vec{H}=2 r^{2}(z+1) \sin \phi \overrightarrow{\mathrm{a} \phi}$. Verify stokes theorem for the portion of a cylindrical surface defined by $\mathrm{r}=2, \frac{\pi}{4} \leq \phi \leq \frac{\pi}{2}, 1 \leq \mathrm{z} \leq 1.5$ and for its perimeter. Given vector magnetic potential.
(08 Marks)
c. $\vec{A}=x^{2} \overrightarrow{a_{x}}+2 y z \overrightarrow{a_{y}}-x^{2} \overrightarrow{a_{z}}$. Find the magnetic flux density.
(04 Marks)

Module-4

7 a. Derive the expression for the force acting on a differential current element placed in a magnetic field.
(06 Marks)
b. A point charge $Q=-1.2$ (C) has velocity $\vec{V}=5 \overrightarrow{a_{x}}+2 \vec{a}_{y}-3 \overrightarrow{a_{z}} \mathrm{~m} / \mathrm{s}$. Find the magnitude of the force exerted on the charge if
i) $\overrightarrow{\mathrm{E}}=-18 \overrightarrow{\mathrm{a}_{x}}+5 \overrightarrow{\mathrm{a}}_{\mathrm{y}}-10 \overrightarrow{\mathrm{a}_{z}}(\mathrm{~V} / \mathrm{m})$
ii) $\vec{B}=-4 \overrightarrow{a_{x}}+4 \overrightarrow{a_{y}}+3 \overrightarrow{a_{z}}$ (T)
(06 Marks)
c. A current element $I_{1} d L_{1}=10^{-4} \vec{a}_{z}$ (A.m) is located at $P_{1}(2,0,0)$ and another current element $I_{2} \mathrm{dL}_{2}=10^{-6}\left(\overrightarrow{\mathrm{a}_{x}}-2 \overrightarrow{\mathrm{a}_{y}}+3 \overrightarrow{\mathrm{a}_{z}}\right)($ A.m $)$ is located at $\mathrm{P}_{2}(-2,0,0)$. Find the force exerted on $\mathrm{I}_{1} \mathrm{dL}_{1}$ by $\mathrm{I}_{2} \mathrm{dL}_{2}$.
(08 Marks)

OR

8 a. Discuss the magnetic boundary conditions as applicable to $\overrightarrow{\mathrm{B}}$ and $\overrightarrow{\mathrm{H}}$ at the interface between two different magnetic materials.
(10 Marks)
b. Write short notes on :
i) Energy Density in magnetic field
ii) Forces on magnetic materials.
(10 Marks)

Module-5

9 a. List Maxwell's equations in integral form and derive the point form of Maxwell's equation for time varying fields.
(12 Marks)
b. Show that in a capacitor the conduction current density is equal to displacement current density for applied voltage $V(t)=V_{0}$ Cos wt.
(08 Marks)

OR

10 a. What is Uniform plane wave? Derive the expression of uniform plane wave travelling in free space.
(10 Marks)
b. State and prove Poynting theorem. Also show that average power $P_{\text {avg }}=\frac{1}{2} \frac{E_{m}^{2}}{\eta}\left(W / m^{2}\right)$.
(10 Marks)

Third Semester B.E. Degree Examination, June/July 2019
 Additional Mathematics - I

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Find the sine of the angle between $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+2 \hat{k}$.
(08 Marks)
b. Express the complex number $\frac{(1+\mathrm{i})(1+3 \mathrm{i})}{1+5 \mathrm{i}}$ in the form $\mathrm{a}+\mathrm{ib}$.
(06 Marks)
c. Find the modulus and amplitude of $\frac{(1+\mathrm{i})^{2}}{3+\mathrm{i}}$.
(06 Marks)

OR

2 a. Show that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cdot \cos ^{n}\left(\frac{0}{2}\right) \cdot \cos \left(\frac{n \theta}{2}\right) . \quad$ (08 Marks)
b. If $\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{b}=8 \hat{i}-4 \hat{j}+\hat{k}$, then prove that \vec{a} is perpendicular to \vec{b}. Also find $|\vec{a} \times \vec{b}|$.
(06 Marks)
c. Determine λ such that $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-4 \hat{k}$ and $\vec{c}=\hat{i}+\lambda \hat{j}+3 \hat{k}$ are coplanar. (06 Marks)

Module-2

3 a. If $y=\cos (m \log x)$ then prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(m^{2}+n^{2}\right) y_{n}=0$. (08 Marks)
b. Find the angle of intersection of the curves $r^{2} \sin 2 \theta=a^{2}$ and $r^{2} \cos 2 \theta=b^{2}$. (06 Marks)
c. Find the pedal equation of the curve $\mathrm{r}=\mathrm{a}(1+\sin \theta)$.

OR

4 a. Obtain the Maclaurin's series expansion of $\log \sec x$ up to the terms containing x^{6}. (08 Marks)
b. If $u=\operatorname{cosec}^{-1}\left(\frac{x^{\frac{1}{2}}+y^{\frac{1}{2}}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}\right)$, prove that $x u_{x}+y u_{y}=-\frac{1}{6} \tan u$.
(06 Marks)
c. Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ where $u=x+y+z, v=y+z, w=z$.
(06 Marks)

Module-3

5 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$.
(06 Marks)
c. Evaluate $\int_{0}^{1} \int_{x}^{x} x y d y d x$
(06 Marks)

6 a. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$.
(08 Marks)
b. Evaluate $\int_{0}^{\infty} \frac{x^{6}}{\left(1+x^{2}\right)^{9 / 2}} d x$.
(06 Marks)
c. Evaluate $\iint_{A} x y d x d y$ where A is the area bounded by the circle $x^{2}+y^{2}=a^{2}$ in the first quadrant.
(06 Marks)

Module-4

7 a. A particle moves along the curve $\vec{r}=\cos 2 t \hat{i}+\sin 2 t \hat{j}+t \hat{k}$. Find the components of velocity and acceleration at $\mathrm{t}=\frac{\pi}{8}$ along $\sqrt{2} \hat{\mathrm{i}}+\sqrt{2} \hat{j}+\hat{\mathrm{k}}$.
(08 Marks)
b. Find divergence and curl of the vector $\vec{F}=\left(x y z+y^{2} z\right) \hat{i}+\left(3 x^{2}+y^{2} z\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k}$.
(06 Marks)
c. Find the directional derivative of $\phi=x^{2} y z^{3}$ at $(1,1,1)$ in the direction of $\hat{i}+\hat{j}+2 \hat{k}$.
(06 Marks)

OR

8 a. Find the angle between the tangents to the curve $\mathrm{x}=\mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{3}, \mathrm{z}=\mathrm{t}^{4}$ at $\mathrm{t}=2$ and $\mathrm{t}=3$.
(08 Marks)
b. Find $\operatorname{curl}(\operatorname{curl} \vec{A})$ where $\vec{A}=x y \hat{i}+y^{2} z \hat{j}+z^{2} y \hat{k}$.
(06 Marks)
c. Find the constants a, b, c such that the vector field $(\sin y+a z) \hat{i}+(b x \cos y+z) \hat{j}+(x+c y) \hat{k}$ is irrotational.
(06 Marks)

Module-5

9 a. Solve $\frac{d y}{d x}=\frac{y}{x}+\sin \left(\frac{y}{x}\right)$.
(08 Marks)
b. Solve $\frac{d y}{d x}+y \cot x=\sin x$.
(06 Marks)
c. Solve $\frac{d y}{d x}+\frac{y}{x}=y$
(06 Marks)

10 a. Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.
(08 Marks)
b. Solve $x^{2} \frac{d y}{d x}=3 x^{2}-2 x y+1$.
(06 Marks)
c. Solve $\left[y\left(1+\frac{1}{x}\right)+\cos y\right] d x+[x+\log x-x \sin y] d y=0$.
(06 Marks)

Third/Fourth Semester B.E. Degree Examination, June/July 2019 Constitution of India, Professional Ethics \& Human Rights (COMMON TO ALL BRANCHES)

Time: 2 hrs.]
[Max. Marks: 30

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The members of the Constituent Assembly which drafted the constitution of India were,
a) Nominated by the British parliament
b) Nominated by the Governor General
c) Elected by the Legislative Assemblies of various provinces
d) Elected by the Indian National Congress and Muslim league.
7. Which one of the following determines that the Indian constitution is federal?
a) A written and rigid constitution
b) An independent judiciary
c) Vesting of residuary powers with the centre
d) Distribution of powers between the centre and the state.
8. The Indian parliamentary system is different from the British parliamentary system in which of the following respects?
a) Both a real and nominal executive
b) A system of collective responsibility
c) Bicameral legislature
d) A different judicial review
9. Which one of the following objectives is not embodied in the Preamble to the Constitution of India?
a) Liberty of thought
b) Economic liberty
c) Liberty of expression
d) Liberty of belief
10. The mind of the makers of the Constitution of India is reflected in which of the following?
a) The Preamble
b) The Fundamental Rights
c) The Directive Principles of State policy
d) The fundamental duties.
11. Which one of the following rights was described by Dr. B.R. Ambedkar as the heart and soul of the Constitution?
a) Right to freedom of religion
b) Right to property
c) Right to equality
d) Right to constitutional remedies.
12. The $9^{\text {th }}$ schedule to the Indian Constitution was added by;
a) $1^{\text {st }}$ Amendment
b) $8^{\text {th }}$ Amendment
c) $9^{\text {th }}$ Amendment
d) $42^{\text {nd }}$ Amendment
13. Which one of the following Articles of the directive principles of state policy deals with the promotion of international peace and security?
a) 51
b) 48 A
c) 43 A
d) 41
14. The ideal of 'Welfare state' in the Indian Constitution is enshrined in its ;
a) Preamble
b) Directive Principles of State Policy
c) Fundamental rights
d) $7^{\text {th }}$ Schedule
15. For a citizen of India, the duty to pay taxes is a,
a) Fundamental duty
b) Legal obligation
c) Constitutional obligation
d) Moral obligation
16. Which of the following statements regarding the pardoning Powers of the President is incorrect?
a) Pardoning power of the president is restricted.
b) President can completely pardon any sentence
c) The power to pardon is the discretionary power of President
d) None of these.
17. Which one of the following is responsible for the preparation and presentation of union budget of the parliament?
a) Department of Revenue
b) Department of Economic Affairs
c) Department of Expenditure
d) None of these
18. Which of the following statement is incorrect regarding budget?
a) The term 'Budget' is not explicitly stated in Indian Constitution
b) The Budget can be introduced in Lok Sabha only
c) The introduction of budget required recommendation of the President
d) The Budget is passed like an ordinary bill in the parliament.
19. The power of the Supreme Court of India to decide disputes between the Centre and the States falls under its;
a) Advisory jurisdiction
b) Appellate jurisdiction
c) Original jurisdiction
d) Constitutional jurisdiction
20. The power to increase the number of judges in the Supreme Court of India is vested in;
a) The President of India
b) The Parliament
c) The Chief Justice of India
d) The Law Commission.
21. There is a Parliamentary System of Government in India because the
a) Lok Sabha is elected directly by the people
b) Parliament can amend the Constitution
c) Rajya Sabha cannot be dissolved
d) Council of Ministers is responsible to the Lok Sabha
22. Appointment, posting and promotion of district judge in a state are made by the
a) Governor in consultation with the High Court
b) Chief Justice of the High Court of that state in consultation with the Governor
c) President in consultation with the High Court
d) President in consultation with the Governor and the High Court.
23. Notifications in respect of by-elections to the Lok Sabha are issued by the
a) Election commission
b) Speaker of Lok Sabha
c) The Whip
d) No notification is required for by-election.
24. With reference to 'None of the Above (NOTA)' option on electronic voting machines and ballot papers, consider the following statements:
I) The Citizens of India have the right to negative vote by exercising the "None of the Above' option in EVMs and ballot papers.
II) If NOTA gets the highest votes is an election, then the election is conducted again.
a) I only
b) I and II
c) II only
d) None of these
25. With reference to $73^{\text {rd }}$ Amendment Act of the constitution, a Grama Sabha is a body consisting of
a) All the adult population of the Village under the Panchayat
b) The whole population of the villages under the Panchayat other than children less than five years of age.
c) The registered voters of the villages under the Panchayat
d) None of the above.
26. Which of the following is not taken as the aim of engineering ethics?
a) Moral imagination
b) Recognition of ethical issues
c) Sense of responsibility
d) Shifting of responsibility
27. Which of the following is not a concept of responsibility?
a) Minimalist
b) Maximalist
c) Reasonable care
d) Good works
28. Corrupt Professional Judgment leads to
a) Integrity in R\&D
b) Reliability
c) Conflict of interest
d) None of these
29. The formulate of a soft drink is an example of
a) Copy Right
b) Trade Secret
c) Patent
d) Trade Marks
30. It is not a kind of trademark:
a) Designs
b) Sounds
c) Symbols
d) Good will
31. These are not trade secrets
a) Formulas
b) Principles
c) Devices
d) None of these
32. Stealing of intellectual property means
a) Cooking
b) Forging
c) Plagiarism
d) Symbols
33. Cooking means
a) Boiling under pressure
b) Making deceptive statements
c) Retaining results with fit the theory
d) Misleading the public about the quality of a product.
34. This is not dishonesty in engineering
a) Forging
b) Blending
c) Trimming
d) Cooking
35. One of the ways of reducing the risk is
a) Complex interaction
b) Tight coupling
c) Normalization of deviance
d) Changing the working system.

Third／Fourth Semester B．E．Degree Examination，June／July 2019干న్నడ్ తోనును
（COMMON TO ALL BRANCHES）

Time： 2 hrs ．］
［Max．Marks： 30

శ్రఔనొగెళ

 గురుతినుప్రుదు అభ్యథికయు జఱాబ్దరియూగిరుత్తది．

 ভ్రల్నిగి ఎరడు లుత్తరపన్ను గురుతిసుపుదు అఱూన్య．
5．ఎల్లా లుత్తరగళన్ను నిఱుగి ఒదగిసలాశ ఓ．ఎం．ఆరో లుత్రర ङજ్రశశయయ
 గురుతు దూూడషొశు．

అ）ఱలరినుత్ర
ఒ）ఎబేఁల
ఈ）ఈఙృలు దుర
๘）శ్రెరంひు స్山ైగ

2．＂దుఃిడి డుండుల＂దందారర
అ）ఆంద్ ఱృదొలర
బ）నబభٌఃలపుండెల
モ）డ్మేતึూరు
๘）బితృదుగఁ．

అ）ठృలైజు రౌంగ
బ）ळసిరు ணீలన్ను
モ）నాఔుతంతి
డ）అదిరంంగె థ్లుణ．

$$
\text { Ver - D } 1 \text { of } 4
$$

అ) నృల్మనిల
బ) ఐదినిల
₹) ఆరెనిల
๘) ఏళైనల

అ) శீంఱుగుణ
బ) సౌత్టిశగ గుణ
₹) उəదుస் గుణ
డీ) రృజసెగుణ.

అ) రిలeళ్టి దుత్తు శోoeal
బ) రృదెణ

డు బాలంది, రెదెన
7. శజ్జ - ఇదేర తత్సదు రృంద
అ) ઠృయు
బ) ठอద్య
₹) శЪతృદ
๘) రృయిళ
8. ठંత్తిదులె - ఇదు
అ) జึอలడిఱెద

₹) నుడిగగ్్రు
డ్) ద్విరుర్తి ఎదా.

అ) దిలలోணత్తు
బ) கீกగ่ళు

10. నొలeడిదేళు - ఇదర నిడైదాథఁ
ఱ) నొలాడెళు
బ) నొలలడుత్తిద్దెళు
₹) నొలeడిద్దాళు
డ) నొలఁడుతృతళ
11. శలిభిలదుని - ఇదేర పిభర్తి
అ) జతృథిร
బ) ద్వితిలయూ
₹) సుంభٌలధృనా
డ్) సెట్తెది .
12. దొలడృణ - పిరుద్దద డదద
అ) ఱెడుదెణ
బ) తెంళేణ
₹) బడ゙గగణ
డ) దొండణ

13．దే．రా．బెలంద్యయుదర శాద్యనాదు
అ）అంబిరాతనయు దత్త
బ）ตినాయై
モ）ఆనెందేరంద్
๘）శడడితరెద భాగఁద

బ）బాల్టిలయి ळౌడు
モ）రృృదణ
๔్）ఎల్లా ळుడుగియిర శశనససు
 ळేยిదచెరు．

బ）శుదึండు
₹）లృ．బ．రాస్త్రి，
๘）గృంధిలజి
 రెజిసిద్ ఆయఃల్గ

モ）నాల్టడి ఆయిจలగ
๘）పులరో ఆయిoen

అ）జ゚లอడున దుడి
బ）బురళి దుణిణిగ
₹）డొృశజ్జియి శనసైగెళు

అ）ळాస్యృగౌర
ぞ）నెกగกอర
ఈ）గొలణేదృర
๘）ఫొలిరార

అ）గుణడొఖ
బ） $\overrightarrow{\mathrm{N}} 0$ రృృ 0 Oి
₹）శోల్లు శరరుగుద స్బుయు
๘）ळుళినేనైు．
20.

ఎల్లారంథదేెల్ల నెన్నెగంండ－ఎందు ळౌడిద సుంత
అ）అర్రెదుळวదొలిి
బ）ళిశునాళ శరిలథ
も）బసెదణ
๘）సెదఁદజ్ఞ．

అ）బి．జి．ఉలో స్క్రాపి
బ）శుదాండు బُలంది
₹＇）బُలందై
๘）డృəణદఒวంద్，తైజస్తి

22．＂గాంధి＂子థేกอర
అ）బేసెగేరేశళ్రి రపదుణ
బ）$ి . ~$ లంశீఁర

๘）చుదేండు

అ）సు．రరం．ఎర్పుండి
æ）శో．దసో．నిసెరో అळదుదో
₹）సిద్దలలింగయయ్య
డ）బిలందో．

అ）రాృంతిరార
బ）సృృడ్రిరార
ซ）సెదుగార
๘）యదొదదృ అల్ల．

25．＂నిలు＂శథి ఔ నెది చిదాదేద బగ్గా అరిద్య దూడిసుత్తై＂
అ）దుळృదాయి
బ）భిలదు
₹）ธృదึలర
๘）నొలతృదెతి

అ） 1956
బ） 1971
峿） 1975
๘） 1973.

27．దుల్లదుల్లనే－ఇదు
అ）ద్విరుర్తి
బ）జేอఁడునుడి
چ）అనుపరేణ అద్యయ
డ）యోవుదు అల్ల

28．＂దుశ్మిళు దురి＂－2దు
అ）ద్తిరుి
2）డృత్యయి రృడ
₹）జేอఁడునుడి
๘）అనురెరణణ ఱెద
29.

กีళగళళన－शదు
అ）అనుదరరణ అద్యయు
బ）ద్హిరుర్తి
₹）జึలఁడునుడే ఱెద
డ్）స్లంభాంధ దాజేద డెదద

30．ఆరృర－ఇదరర తతత్బె రృృ
అ）ఆกస்
బ）$అ గ \cdots \cdots$
モ）ఆఈว๖
๘）ఆกอస్

Third/Fourth Semester B.E. Degree Examination, June/July 2019 Kannada Kali
(COMMON TO ALL BRANCHES)
Time: 2 hrs.]
[Max. Marks: 30

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the OMR sheets is strictly prohibited.
[From Question No: 1 to 5]
6. Country: \qquad
a) Desha
b) Vesha
c) Rajya
d) Taluk
7. Girl:
a) Huduga
b) Ganda
c) Hudugi
d) Badagi
8. Mother: \qquad
a) Tande
b) Tayi
c) Magalu
d) Hendati
9. Circular:
a) Chowka
b) Aayatha
c) Vrittakara
d) Udda
10. Gold:
a) Chinna
b) Belli
c) Vajra
d) Havala

Note : Substitute the words from the following each sentence in appropriate place. [From Q No. 6 to 8]
6. Doctor Aushadi \qquad (kodu)
a) Heltare
b) Kottaru
c) Sigtare
d) Kelu
7. Leela ivattu bengalurige \qquad (Hogu)
a) Hoguttane
b) Hoguttale
c) ide
d) Howdu
8. TV \qquad tale novu baruttade. (Nodu)
a) Odidare
b) Kelidre
c) Nodidre
d) Idre

Note: Write the English word for given Kannada word. [From Q No. 9 to 12]
9. Vayasu:
\qquad
a) Year
b) Month
c) Week
d) Age
10. Tarakari:
\qquad
b) Lemon
c) Vegetable
d) Potato
a) Fresh
11. Gottu: \qquad
c) Dark
b) Like
d) Cold
a)Know
12. Adigemane:
\qquad b) Kitchen
c) Street
d) Hall
a) Bath room
c) Street

Note : Fill in the blank choosing the right word from the group below :
13. Neevu Hege
?
a) Iddare
b) Iddiri
c) Iddale
d) Iddi

Note : Translate the following Kannada question into English.
[from question No. 14 to 15]
14. Aa Pustaka olleyadu.
a) Which book is good?
b) That book is good.
c) My book is good.
d) Her book is bad.
15. Naanu beligge Edde.
a) I got up late.
b) I got up in the morning.
c) I like sleeping.
d) He woke up late.

Note: Translate the following English words to Kannada [from Q No. 16 to 20]
16. Curd: \qquad
a) Majjige
b) Anna
c) Sambar
d) Mosaru
17. Grass: \qquad
a) Hullu
b) Hallu
c) Bellu
d) Mullu
18. To laugh: \qquad
b) Nagu
c) Bidu
d) Magu
19. Hot water:
a) Tanneru
b) Bella
c) Bisi neeru
d) Hasiru
20. Lesson: \qquad
a) Paata
b) Nota
c) Parisara
d) Jagala

Note : Translate the Kannada word into English.
[From Q No. 21 to 30]
21. Maralu: \qquad b) Sand
c) People
d) Bank
22. Samparka:
a) Run
b) Father
c) Contact
d) Doubt
23. Hatti: \qquad
a) Cotton
b) Bread
c) Jar
d) King
24. Parisara:
a) Daily
b) Class
c) Duty
d) Environment
25. Tota
a) Tall
b) Strong
c) Garden
d) Like
26. Jwara:
\qquad
a) Meal
b) Fever
c) Gruel
d) Month
27. Raita: \qquad
b) Grass
c) Farmer
d) Field
28. Kaanu: \qquad
b) To ask
c) To keep
d) To play
29. Roodhi: \qquad
b) Practise
c) Hot water
d) Learn
30. Paata: \qquad
b) Lesson
a) Tour
c) Poor
d) Happy

